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Human-associated microbes have primarily been viewed through 
the lens of a single species and its environment. Advances in culture-
independent technologies have shown the enormous diversity, functional 

capacity, and age-associated dynamics of the human microbiome (see the Glossary). 
A large number of diverse microbial species reside in the distal gastrointestinal 
tract, and gut microbiota dysbiosis — imbalances in the composition and function 
of these intestinal microbes — is associated with diseases ranging from localized 
gastroenterologic disorders to neurologic, respiratory, metabolic, hepatic, and 
cardiovascular illnesses. Much effort is currently concentrated on exploring poten-
tial causality and related microbiota-mediated disease mechanisms, with the hope 
that an improved understanding will fuel the conception and realization of novel 
therapeutic and preventive strategies.

Until recently, our view of human microbiology was largely shaped by culture-
based studies of single microbes (bacteria, archaea, fungi, and viruses), frequently 
isolated from patients who had acute infection or chronic disease. However, sev-
eral decades ago, environmental microbial ecologists recognized that the diversity 
of microbes observed by microscopy far exceeded that of organisms recovered with 
the use of traditional culture-based approaches.1 A variety of culture-independent 
molecular assays (Table 1) for detecting and classifying microorganisms (micro-
biota) and assessing their encoded genes (microbiome) and gene products showed 
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Biomarker sequencing: The process of cataloguing microbes in a mixed-species community through 
analysis of sequence variation in a single ubiquitous gene.

Holobiont: The totality of organisms in a given ecosystem (e.g., the shared human and microbial 
ecosystem); also called a superorganism.

Metabolome: The complete set of small-molecule chemicals found in a biologic sample.

Metagenome: All the genetic material present in an environmental sample, consisting of the ge-
nomes of many individual organisms.

Methanogenic archaea: Methane-producing microbes of the ancient Archaea kingdom.

Microbiome: The collection of all genomes of microbes in an ecosystem.

Microbiota: The microbes that collectively inhabit a given ecosystem.

Pathobionts: Typically benign endogenous microbes with the capacity, under altered ecosystem 
conditions, to elicit pathogenesis.

Prebiotics: Nutritional substrates that promote the growth of microbes that confer health benefits 
in the host.

Probiotics: Live microbes that confer health benefits when administered in adequate amounts in 
the host.

Synbiotics: Formulations consisting of a combination of prebiotics and probiotics.
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that microbes rarely exist in isolation. Instead, 
they subsist in complex, interactive, interking-
dom, multispecies microbial communities with-
in a habitat. As the field has developed, it has 
become apparent that virtually every habitat, and 
every organism, on earth has its own microbiota. 
This includes the human holobiont, a conglom-
erate of mammalian and multispecies microbial 
cells in spatially segregated ecosystems, the ge-
nomic content of which is influenced by both 
topography and biologic individuality.2

In humans, the gastrointestinal tract repre-
sents a large microbial ecosystem, housing sev-
eral trillion microbial cells. An integrated cata-
logue of the human fecal microbial metagenome, 
based on data from 1200 persons in the United 
States, China, and Europe, identified an aggre-
gate 9.9 million microbial genes across these 
fecal microbiomes.3 More than a billion years 
of mammalian–microbial coevolution has led to 
interdependency. As a result, the intestinal micro-
biota play a critical role in the maturation and 
continued education of the host immune re-
sponse4; provide protection against pathogen 
overgrowth5; influence host-cell proliferation6 and 
vascularization7; regulate intestinal endocrine 
functions,8 neurologic signaling,9 and bone den-
sity10; provide a source of energy biogenesis11 (5 to 
10% of daily host energy requirements); biosyn-
thesize vitamins,12 neurotransmitters,9 and multi-
ple other compounds with as yet unknown tar-
gets; metabolize bile salts13; react to or modify 
specific drugs; and eliminate exogenous toxins14 
(Fig. 1). The relevance of these microbial activi-
ties to health probably varies across the human 
population. Given the diverse functional reper-
toire of the gut microbiota, it is not surprising 
that they are the focus of research into a broad 
range of chronic diseases, including cancer and 
diseases with inflammatory, metabolic, cardio-
vascular, autoimmune, neurologic, and psychi-
atric components.

Gu t Microbio ta across the Ages

The in utero environment has, until relatively 
recently, been considered sterile. However, DNA-
based microbiota studies have detected bacterial 
species in the placentas of healthy mothers,15 in 
amniotic fluid of preterm infants,16 and in meco-
nium.17 At parturition, the mode of delivery in-
fluences postnatal microbial exposure.18,19 A study Ta
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of fecal samples (collected 4 days, 4 months, and 
12 months after birth) from Swedish infant–
mother dyads showed that the gut microbiota of 
vaginally delivered neonates is taxonomically 
similar to the maternal gut and vaginal micro-
biota,19 though strain-level analyses are required 
to confirm the exact source of neonatal gut 
microbial diversity. This study also showed that 
the composition of the gut microbiota in infants 
changes to resemble adult microbiota in associa-
tion with the cessation of breast-feeding (not the 
introduction of solid food).19 During the first 
postnatal years, bacterial diversity and functional 
capacity expand,12 an observation that is consistent 
with improved cysteine metabolism and augment-
ed fermentation pathways (encoded by lactic acid 
bacteria acetolactate decarboxylase [EC4.1.1.5] and 
6-phosphogluconate dehydrogenase [EC1.1.1.44]), 
as well as more efficient bacterial foraging of 
intestinal mucosal mucins12 (a capacity that con-
fers colonization advantages20).

The rapid rate of expansion in bacterial diver-
sity that is observed in infancy slows in early 
childhood (between 1 and 5 years of age) (Fig. 2),21

and gut microbial diversity remains lower in 
children than in adults.21 In childhood, the com-
position of gut microbiota becomes more stable, 
with multiple members of Bacteroidetes, including 
those with butyrate-producing capacity, establish-
ing a presence.21 By preadolescence (7 to 12 years 
of age), although the number of bacterial taxa and 
functional genes present in the gut microbiome 
is similar to that in adulthood,22 the age-differen-
tiated microbial communities are taxonomically 
and functionally distinct. In preadolescents, as 
compared with adults, the gut microbiota are 
enriched in anaerovorax, bifidobacterium, faeca-
libacterium, and Lachnospiraceae and for path-
ways involved in vitamin B12 and folate biosynthe-
sis22; folate biosynthesis is also characteristically 
increased in babies as compared with adults.12,19

Healthy adult gut microbiota are dominated by 
Bacteroidetes and Firmicutes but also include 
smaller proportions of Actinobacteria, Proteobac-
teria, and Verrucomicrobia,23 as well as methano-
genic archaea (primarily Methanobrevibacter smithii), 
Eucarya (predominantly yeasts), and multiple 
phages.24 At the bacterial phyla level, the gut 
microbiota in adults, as compared with those in 
infants, are stable, but the specific microbial 
species and subspecies (strains) and their propor-
tions vary enormously from one person to an-

other.12 In fact, the microbial collection in each 
person is unique. Despite this taxonomic inter-
individual variation, the functional capacity of 
the adult gut microbiota is relatively consistent 
across healthy persons,25,26 with pathways in-
volved in metabolism,12 fermentation, methano-
genesis,12 oxidative phosphorylation, and lipo-
polysaccharide biosynthesis.22 In the elderly, the 
gut microbiota become compositionally unstable 
and less diverse, events that are associated with 
coexisting conditions and age-related declines in 
immunocompetence27 (Fig. 2).

 Influences on the Gu t 
Microbio ta

Endogenous and exogenous factors influence the 
gut microbiota,28,29 including mode of delivery of 
a neonate,19 host genetic features,30 host immune 
response,31 diet32 (including dietary supplements, 
breast-feeding, and formula-feeding), xenobiotics 
(including antibiotics) and other drugs,10,33 infec-
tions,34 diurnal rhythm,35 and environmental mi-
crobial exposures,36 several of which are estab-
lished risk factors for childhood diseases such 
as obesity37 and allergy.38 The relative influence 
of these factors on the composition and function 
of the human gut microbiota, as well as the 

Figure 1. Some Functions of the Gut Microbiota and 
Disease Associations.
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persistence of these effects, varies substantially. 
Sex, age, diet, exposure to antimicrobial agents, 
and stool consistency have been shown to exert 
large effects on the gut microbiota.12,28,29,33 The 
host genome has been shown to be associated 
with the heritability of specific bacterial families 
such as Christensenellaceae, which forms a co-
occurrence network with other heritable bacteria 
and methanogenic archaea, and is associated with 
leanness and healthy metabolism.30,39 Disease-
associated single-nucleotide polymorphisms of 
the human genome have been associated with 
the enrichment of specific bacterial taxa in the 
gut microbiota of persons with inflammatory 
bowel disease.40 However, specific nongenetic fac-
tors, including the use of antimicrobial and im-
munosuppressant drugs and the site of intestinal 
biopsy sample collection, have had larger effects 
on the composition of the gut microbiota, indi-
cating the need to control for such variables.40

 Immunity

Studies of mice rendered deficient for specific 
genes have shown that sensing of microbes by 

regulatory T (Treg) cells promotes mucosal toler-
ance and prevents overgrowth of segmented fila-
mentous bacteria by triggering intestinal devel-
opment and synthesis of Treg cells and secretion 
of antimicrobial IgA.31 Recently, three composi-
tionally, functionally, and metabolically distinct 
gut microbiota states were described in babies 
who were approximately 1 month of age; one of 
these conferred a significantly higher relative risk 
of allergy in 2-year-old children and of asthma 
in 4-year-old children. In ex vivo assays, the asso-
ciated products of the high-risk microbiota state 
induced an increase in CD4+ cells that produce 
interleukin-4 , increased interleukin-4 production, 
and reduced the number of CD4+CD25+FOXP3+ 
cells, indicating that perturbation of early-life 
gut microbiota may contribute to subclinical 
inflammation that precedes childhood disease 
development.41

 Diet and Other Environmental Influences

Dietary habits strongly influence the selection of 
gut microbiota.12 Short-term intervention studies 
involving healthy adults exposed to diets restrict-
ed to meat or vegetable intake have shown rapid 
and reproducible gut microbiota responses, with 
meat consumption selectively enriching for bile-
metabolizing microbiota, the expansion of which 
is associated with inflammatory bowel disease, 
and vegetable consumption increasing plant 
polysaccharide-fermenting organisms.32 It has 
also been reported that persons have very differ-
ent metabolic responses to identical meals. The 
results of a machine-learning approach applied 
to the integration of blood glucose levels, dietary 
habits, and gut microbiome data, among other 
factors, predicted personalized postprandial gly-
cemic responses to real-life meals, indicating 
that personalized diets may be used to success-
fully modify blood glucose levels.42 Emerging data 
also indicate that the microbiota is distinct in 
house dust from residences associated with pro-
tection against, or development of childhood 
allergic disease.43-45 Moreover, either oral supple-
mentation or nasal exposure of mice to protective 
house dust prevents airway sensitization,36,45,46

indicating that exposure to environmental mi-
crobes modulates mucosal immunity. Other in-
fluences on the gut microbiota include pathogenic 
infection. For example, Vibrio cholerae initially 
dominates fecal bacterial communities during a 
cholera infection,34 and clinical recovery is associ-

Figure 2. Temporal Development of the Gut Microbiota in Humans.

B
ac

te
ri

al
 D

iv
er

si
ty

0 1 5 12 70 100

Glycan foraging
Vitamin

biosynthesis

Fermentation
Cysteine metabolism
Folate biosynthesis

Cobalamin
biosynthesis

Folate biosynthesis
Vitamin B12

biosynthesis

Oxidative
phosphorylation

Lipopolysaccharide
biosynthesis

Flagellar assembly
Steroid hormone

biosynthesis
RNA degradation

Reduction in
fermentation

capacity

Diet-related metabolism
Western

Glutamine degradation
Amino acid degradation
Simple sugar catabolism
Vitamin biosynthesis
Xenobiotic metabolism
Bile salt metabolism

Non-Western
Glutamate synthase
Alpha-amylase

Age (yr)

The New England Journal of Medicine 
Downloaded from nejm.org on December 14, 2016. For personal use only. No other uses without permission. 

 Copyright © 2016 Massachusetts Medical Society. All rights reserved. 



n engl j med 375;24  nejm.org  December 15, 2016 2373

Human Intestinal Microbiome in Health and Disease

ated with a restoration of the preinfection com-
position of the gut microbiota resembling that 
observed in infancy. In contrast, even if drug-
induced viral suppression of human immunode-
ficiency virus (HIV) replication is successful, the 
gut microbiota of patients with HIV infection 
frequently remain perturbed,47,48 a feature related 
to the degree of peripheral immune activation.47

Dysbiosis  of Gu t Microbio ta

Association studies in humans and rodents49-53 
have shown disease-related dysbioses across a 
wide spectrum of common chronic disorders, in-
cluding atherosclerosis,54-56 metabolic disorders,57-60 
asthma,41,61 and autism spectrum disorder.62 Some 
of these observations have been combined with 
experimental studies, prospective studies, or both 
to identify putative microbiota-derived molecular 
mediators of pathogenic mechanisms. Many clin-
ical studies have used targeted sequencing of 
16S ribosomal RNA (rRNA), which although eco-
nomical, is limited to assessment of bacterial 
taxonomic composition. However, PICRUSt (Phy-
logenetic Investigation of Communities by Recon-
struction of Unobserved States),63 an algorithm 
that uses 16S rRNA sequence data to predict 
conserved bacterial functional capacity, permits 
in silico bacterial metagenomic analyses. Studies 
have applied high-throughput methods of un-
targeted DNA sequencing in conjunction with 
the newly expanded human microbial gene cata-
logues,3,25 draft genomes,64 and new genome 
assembly, permitting microbial species-level and 
strain-level resolution and detailed functional an-
notations of microbial communities.58-60,65-75 Such 
innovative approaches have facilitated the use of 
machine-learning algorithms to identify micro-
bial gene- or taxon-based signatures as disease 
biomarkers.

Although many novel insights have been gained 
from these explorations, the study of the gut 
microbiome in human health and disease re-
mains fraught with challenges. These include 
major intraindividual variability of the micro
biome with changes in lifestyle, reproducibility 
issues, and statistically underpowered case–con-
trol studies, in addition to studies in which the 
cases and controls are phenotypically, etiologi-
cally, and microbiologically heterogeneous. These 
issues are compounded by a lack of stratification 
based on drug treatment, which potentially con-

founds analytical outcomes,72 and a lack of sta-
tistically powered longitudinal and interventional 
studies involving study participants with well-
defined diseases or preclinical at-risk conditions 
in order to explore causality. Despite evidence 
linking dysbiosis of the gut microbiome with 
disease manifestations at sites distant from the 
gut, most studies have not explored mechanisms 
outside the affected site, nor have they consid-
ered the effect of the microbiome and its varied 
products on the multitude of molecular pathways 
potentially involved. Stool samples are often 
used as proxies for the microbial content of the 
entire gastrointestinal tract, which covers more 
than 30 luminal intestinal square meters and 
contains distinct macroecosystems and micro-
ecosystems. Moreover, since bacterial genome 
databases are incomplete, the majority of genes 
in human gut microbiomes cannot be function-
ally assigned, a problem that is exacerbated by 
our lack of knowledge of both the dynamic tran-
scriptional and translational activities of the gut 
microbiome and the biologic effect of the enor-
mous numbers of polymorphisms and other 
structural variations of the microbiome. Finally, 
most studies have focused primarily on bacterial 
species rather than on the functional interplay 
among bacteria, archaea, viruses, fungi, and eu-
karyotes throughout the human gastrointestinal 
tract.

There have been few demonstrations of cau-
sality for which human studies correlating gut 
microbial dysbiosis with distinct clinical states 
have been complemented by mechanistic studies. 
These studies have addressed human obesity,76 
kwashiorkor,77 childhood asthma,41 massive weight 
loss after bariatric surgery,65 and the insulin-resis-
tant state of third-trimester pregnancy.78 In addi-
tion, a study combining analyses of human host 
insulin sensitivity, fasting serum metabolome, 
and the gut microbiome with findings from ex-
periments in mice suggests that specific bacteria 
may cause insulin resistance.79 Also, transplanta-
tion of fecal microbiota from healthy lean human 
donors to obese patients with insulin resistance 
is associated with improvement in whole-body 
insulin sensitivity in the recipients,80 further sup-
porting the notion that microbiota-associated 
phenotypes may be transferred and reproduced, 
at least to some extent, in a genetically suscep-
tible recipient.

A “common ground” hypothesis (Fig. 3), which 
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has yet to be rigorously examined, has been 
proposed81 to explore the question of whether 
imbalances of gut microbial communities are a 
consequence or a cause of chronic polygenic dis-
eases. This hypothesis posits, first, that various 
endogenous or exogenous factors, or combina-
tions of such factors, trigger an increase in gut 
permeability (“leaky mucosa”) or mucosal in-
flammation either directly or through selective 
pressure on the gut microbiota; second, that in 
persons who are genetically susceptible to one 
or more chronic disorders, the subclinical intes-
tinal abnormalities favor the expansion of oppor-
tunistic microbes and the transition to patho-
bionts; third, that microbial gene products from 
the dysbiotic pathobiont gut communities pro-
mote local or systemic morphologic and func-
tional changes that are pathogenic; and finally, 
that once disease-associated gut microbiota have 
been expressed in a genetically susceptible per-
son, they can be transferred from that person to 
a genetically sensitive recipient, acting as a con-
tinual and contributing pathogenic mechanism.

 Ther a peu tic a nd Pr e v en ti v e 
Opport uni ties

 Infection with Clostridium difficile

Fecal microbial transplantation for severe cases 
of recurrent diarrhea caused by antibiotic-resis-
tant C. difficile infection is efficacious in approxi-
mately 90% of affected patients. This finding 
remains the prime proof of principle that healthy 
gut microbiota can reproducibly correct a severe 
and specific microbial dysbiosis and that trans-
plantation of healthy microbiota is therefore 
medically actionable.82 For chronic inflammatory 
bowel diseases, clinical remission is less predict-
able, and success rates are more modest.83 Be-
cause many persons dislike aspects of fecal micro-
bial transplantation and, more important, because 
transplantation carries the potential risk of trans-
ferring to recipients infections and other pheno-
types that are clinically silent in donors, several 
preclinical and clinical initiatives84,85 are under 
way. These investigations test and develop single 
commensals, mixtures of defined species or 

Figure 3. “Common Ground” Hypothesis of Pathogenesis Caused by Dysbiotic Gut Microbiota.
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strains, or cocktails of microbiota-derived mole-
cules targeting specific microbial species or path-
ways that are enriched in the disease state, in an 
effort to treat or prevent various common disor-
ders (Fig. 4). The outcomes of selected preclini-
cal studies are discussed below. The findings 
suggest that microbial-based therapeutics or pre-
ventives may have an advantage over interventions 
with synthetic drugs. They may be less likely to 
have severe side effects, given the coevolution of 
human-derived microbial strains and humans.

 Atherosclerosis and Products 
of the Microbiota

Studies have shown that gut microbiota metabo-
lism of dietary phosphatidylcholine and l-carni-
tine produces trimethylamine, which subsequent-
ly undergoes flavin monooxygenase 3–dependent 
oxidation to trimethylamine-N-oxide (TMAO); 
elevated circulating levels of TMAO appear to be 
a strong risk factor for atherosclerosis in humans 
and animals.55,56 A study of a mouse model 
showed how oral application of a structural ana-
logue of choline, 3,3-dimethyl-1-butanol, inhibit-
ed commensal microbial trimethylamine produc-
tion, lowered plasma TMAO levels, and prevented 
atherosclerosis without apparent side effects, de-
spite a pro-atherosclerosis diet.86

Bacteriocins represent another class of prod-
ucts of the mammalian gut microbiota. These 
high-potency peptide toxins may offer leads for 
the development of species-specific or strain-
specific alternatives to current antibiotics.87 For 
example, screening in human stool has identi-
fied 13 bacteriocin-producing bacterial strains.88

Identifying target microbial species that exclude 
pathogens is equally important. With the use 
of mathematical modeling of gut microbiota, 
C. scindens, a secondary bile acid–producing bac-
terium, was identified as promoting resistance 
against C. difficile colonization.89 Given the inter-
active nature of microbiomes, therapies targeting 
a network of interacting organisms that provide 
protection against or precipitate disease are likely 
to be more efficacious than therapies targeting 
a single species.

 Behavior

Exploration of the therapeutic potential of mi-
crobial species at the preclinical level has been 
undertaken in several mouse models, including 
the maternal immune activation (MIA) model. 
The offspring of MIA mice exhibit autistic-like 
behavior, gut microbiota dysbiosis, increased gut 
mucosa permeability, and an altered serum metab-
olome, with an increase in 4-ethylphenylsulfate 
(4EPS) by a factor of 46.62 Injection of this neuro-
toxin into the blood of healthy mice resulted in 
an anxiety phenotype. Feeding MIA mice a strain 
of Bacteroides fragilis ameliorated the intestinal 
dysbiosis, restored the integrity of the mucosal 
barrier, and diminished behavioral abnormali-
ties in conjunction with significant decreases in 
circulating 4EPS levels.62 Similar studies have 
been performed in mouse models of allergic 
airway disease in which oral supplementation 
with Lactobacillus johnsonii, a human vaginal com-
mensal species, provides airway protection against 
both allergen challenge and respiratory viral 
infection.36

Figure 4. Gut Microbiota and Specific Commensals as Potential Preventive or Therapeutic Agents.

Clinical studies are indicated in blue, and preclinical (mouse) studies in red.
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Cancer

Gut microbial species are being explored in the 
field of oncology. Of specific interest is the ca-
pacity of some commensal bacteria to modulate 
the tumor microenvironment and anticancer ther-
apies.90,91 It is well known that T-cell infiltration 
of solid tumors is associated with a positive 
therapeutic response. A recent study comparing 
melanoma growth in mice with distinct gut 
commensals support the hypothesis that certain 
microbes enhance the efficacy of cancer immu-
notherapy.92 Oral administration of a mixture of 
bifidobacterium species modulates the activation 
of dendritic cells, which in turn helps improve the 
effector function of tumor-specific CD8+ T cells. 
Bifidobacterium supplementation improved tumor 
control to the same degree as anti–PD-L1 (pro-
grammed cell death ligand 1) therapy (checkpoint 
blockade) in an animal model, and combination 
treatment (bifidobacterium supplementation and 
anti–PD-L1 therapy) almost completely eliminated 
tumor expansion.92 Similarly, studies in both hu-
mans and mice have shown that the antitumor 
effect of treatment with antibodies against cyto-
toxic T-lymphocyte–associated antigen 4 (CTLA-4) 
is potentiated by specific members of the gut 
microbiota. T-cell responses specific for B. thetaio-
taomicron or B. fragilis were associated with the 
efficacy of CTLA-4 blockade, and the introduc-
tion of B. fragilis to tumorigenic, germ-free mice, 
which do not have a response to CTLA-4 treat-
ment, brought about a response.93 The discovery 
of a tumor-inhibiting molecule produced by a 
probiotic strain was recently made. L. casei strain 
ATCC 334 produces ferrichrome, which has been 
shown to inhibit progression of colon cancer by 
means of apoptosis mediated through the c-Jun 
N-terminal kinase pathway.94

Inflammatory and Metabolic Diseases

Given the tight interplay between gut microbes 
and host immunity,95,96 efforts have focused on 
the isolation of human gut microbial species with 
therapeutic potential in inflammatory disorders. 
A mixture of 17 human clostridium strains has 
been shown to diminish the severity of experimen-
tally induced allergic colitis in rodents through 
mechanisms that promote the expansion and ac-
tivity of Treg cells, although it remains to be de-
termined which bacterial molecules mediate these 
effects.97 More recently, a substantially broader 
range of human gut bacterial strains were shown 

to promote the expansion of Treg cells.98 In addi-
tion, Lactococcus lactis expressing interleukin-10, an 
antiinflammatory cytokine, has been shown to 
be safe in a phase 1 clinical trial99 and was effec-
tive in reducing inflammation in mouse models 
of colitis100 and allergic airway inflammation.101

Within the area of metabolism, studies suggest 
that proteins secreted by Escherichia coli, including 
ClpB, a chaperone protein and a mimic of alpha-
melanocyte–stimulating hormone, affect food in-
take and meal patterns in rodents, with the mag-
nitude of the effect depending on the bacterial 
growth phase. E. coli proteins stimulated intesti-
nal hormones, glucagon-like peptide 1 (a potent 
antihyperglycemic hormone), and peptide YY 
(produced in the ileum in response to feeding) 
and activated anorexigenic pathways in the brain, 
inducing those that mediate satiety.102 Bioengi-
neered commensals may also have a role in future 
microbiota-mediated therapy.99,103 In a preclinical 
setting, an E. coli strain was genetically manipu-
lated to biosynthesize precursors of the anorexi-
genic N-acylethanolamides, which are produced 
in the ileum in response to feeding and serve to 
reduce food intake and, thus, obesity. Introduc-
tion of this engineered strain in obese mice fed a 
high-fat diet resulted in lower food intake, an in-
creased basal metabolic rate, and a pronounced 
loss of adiposity, which endured for 4 weeks 
after cessation of bacterial supplementation.104 
Similarly, in studies of rats with diabetes, com-
mensals engineered to synthesize and release 
glucagon-like peptide 1 have been shown to 
stimulate epithelial secretion of insulin, thereby 
improving carbohydrate metabolism.105,106

Caution in Extrapolating Basic Findings

The examples discussed above involve introduc-
tion of human commensals or their products in 
isogenic rodents under highly controlled condi-
tions during defined stages of pathogenesis. 
Predictions of similar effects in humans with 
preclinical or overt disease should be viewed 
with caution. Controlled clinical trials have 
shown relatively modest therapeutic effects of 
traditional probiotics in adults with various es-
tablished disorders.107 In contrast to these find-
ings in adults, a recent prospective study showed 
the effect of probiotics on predisease autoim-
mune signatures in newborns in a large birth 
cohort that was followed to the start of school 
age.108 In this study, neonatal probiotic supple-
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mentation (administered between 0 and 27 days 
after birth) was associated with a 60% reduction 
in the risk of pancreatic islet autoimmunity before 
school age, as compared with either no supple-
mentation or intervention after 27 days, with the 
association accounted for by high-risk children 
with the HLA-DR3/4 genotype. This finding 
raises the question of whether the introduction 
of more targeted formulations in neonates who 
are at increased risk for autoimmunity would 
prevent the subsequent development of autoim-
mune disorders.

Die ta r y In terv en tions 
Ta rge ting Gu t Microbio ta

On the basis of studies in both animals and 
humans, dietary intake appears to be a major 
short-term and long-term regulator of the struc-

ture and function of gut microbiota.32,42,109 Still, 
only a relatively small number of randomized, 
clinically controlled dietary interventions target-
ing the gut microbiota have been reported in 
humans, and these show that energy restriction 
and diets rich in fiber and vegetables are associ-
ated with gut microbial changes that, in turn, are 
associated with a health benefit.70,110-112 Although 
investigation of the relevance of the gut micro-
biome to health and disease is in an early phase, 
the findings, in aggregate, support the view that 
specific dietary regimens, used alone or com-
bined with the administration of mixtures of 
microbial species that have been validated and 
approved by regulatory authorities (next-genera-
tion synbiotics),111 may hold potential for enhanc-
ing public health.

Disclosure forms provided by the authors are available with 
the full text of this article at NEJM.org.
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