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Abstract
North American incidence of Alzheimer’s disease (AD) is ex-
pected to more than double over the coming generation. 
Although genetic factors surrounding the production and 
clearance of amyloid-β and phosphorylated tau proteins are 
known to be responsible for a subset of early-onset AD cases, 
they do not explain the pathogenesis of the far more preva-
lent sporadic late-onset variant of the disease. It is thus likely 
that lifestyle and environmental factors contribute to neuro-
degenerative processes implicated in the pathogenesis of 
AD. Herein, we review evidence that (1) excess sucrose con-
sumption induces AD-associated liver pathologies and brain 
insulin resistance, (2) chronic stress overdrives activity of lo-
cus coeruleus neurons, leading to loss of function (a com-
mon event in neurodegeneration), (3) high-sugar diets and 
stress promote the loss of neuroprotective sex hormones in 
men and women, and (4) Western dietary trends set the 
stage for a lithium-deficient state. We propose that these fac-
tors may intersect as part of a “perfect storm” to contribute 
to the widespread prevalence of neurodegeneration and 

AD. In addition, we put forth the argument that exercise and 
supplementation with trace lithium can counteract many of 
the deleterious consequences associated with excessive ca-
loric intake and perpetual stress. We conclude that lifestyle 
and environmental factors likely contribute to AD pathogen-
esis and that simple lifestyle and dietary changes can help 
counteract their effects. © 2019 S. Karger AG, Basel

Introduction

Advancements in medicine have led to an increased 
life expectancy. As such, neurodegenerative diseases are 
a growing concern. In America, it is estimated that 1 in 9 
people over the age of 65 have Alzheimer’s disease (AD) 
or a related dementia. As one of the costliest chronic dis-
eases, approximately 1 in 5 Medicare dollars is spent on 
AD and dementia. This is expected to be 1 in 3 dollars by 
mid-century [1], independent of the enormous hourly 
cost to family and friends involved in caregiving. With 
our aging population, this disease will bankrupt medical 
systems throughout the industrialized world over the 
coming generation. Is modern lifestyle a contributing 
factor?
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Chronic stress (i.e., depression, anxiety, etc.), increased 
carbohydrate consumption (i.e., obesity, diabetes), chron-
ic inflammatory conditions (i.e., arthritis, cardiovascular 
disease), loss of sex hormones (i.e., age, diet, stress), and 
lack of regular exercise are becoming the norm rather than 
the exception. The physiological stress response has gone 
from being an occasional occurrence that evolved to pro-
mote survival – via the fight-or-flight response – to a per-
petual phenomenon brought on by the fast-paced lifestyle 
of the industrialized, globally interconnected world. Mak-
ing matters worse, our reliance on caffeinated beverages 
and salt-filled fast foods to make it through the day may 
be stripping our bodies of lithium, a neuroprotective min-
eral that protects against inflammation and dietary insult. 
Combined with a lack of time for sleep and exercise, it is 
quite possible that daily lifestyle factors/decisions result in 
a predisposition for neurodegeneration.

Accumulation of amyloid-β (Aβ) peptide deposits 
(plaques), hyperphosphorylated protein tau misfolding 
(neurofibrillary tangles), and forebrain cholinergic defi-
cits are considered the hallmarks of AD pathology. A less-
er known, though increasingly acknowledged, loss of lo-
cus coeruleus (LC) noradrenergic neurons in the dorsal 
pons is associated with all neurodegenerative diseases [2–
4]. The LC is the master stress center that plays a funda-
mental role in regulating output from the hypothalamic-
pituitary-adrenal (HPA) axis. The loss of LC neurons in 
aging and neurodegenerative disease is likely a key factor 
in the dysfunction of the many cognitive processes involv-
ing LC activity [2]. In addition to its role in the HPA axis, 
norepinephrine regulates central nervous system (CNS) 
energy utilization [5], modulates thresholds for synaptic 
plasticity [6], provides neurotrophic [7]/anti-inflamma-
tory [8, 9] support, and aids in the distribution of cerebral 
blood flow [10–12]. Deficits in any of these capacities can 
potentially have an impact on cognitive function. Given 
its role in neurotrophic/anti-inflammatory support and 
the significant loss observed at autopsy, it is postulated 
that loss of LC is one of the earliest contributing factors 
leading to progressive neurodegeneration, thereby raising 
the question of why we find a consistent loss of LC neu-
rons across all neurodegenerative conditions.

Although genetic factors surrounding processing of 
amyloid precursor protein (APP) and the microtubule-
associated protein tau have been proven responsible for a 
small subset of early-onset AD patients, limited progress 
has been made regarding the etiology of sporadic late-
onset AD cases. Non-genetic models of sporadic AD have 
been met with varying levels of success. While contribut-
ing valuable insight, these models generally only assess a 

single stressor that is unable to induce pathology rapidly 
or robustly enough to be cost-effective or useful. In this 
review, we will summarize the pathological sequelae as-
sociated with multiple stressors ever present in modern 
lifestyles to help illustrate how these factors coming to-
gether as the “perfect storm” may be contributing to the 
global AD crisis (Fig. 1).

Where Have We Gone Wrong?

The Western Diet
Evolutionary Discordance and the Rise of 
Agriculture
According to the theories of natural selection and 

punctuated equilibrium, evolution represents a constant 
interaction between the genome of a species and the en-
vironment in which it resides. Genetic traits are positive-
ly or negatively selected in accordance or discordance 
with constraints applied by a given environment. When 
environmental pressures remain relatively consistent, ge-
netic traits come to reflect an optimal pool for survival of 
the population [13, 14]. When rapid and permanent en-
vironmental changes occur, individuals within the popu-
lation experience evolutionary discordance, i.e., failure of 
the genotype to match the requirements of the environ-
ment. Evolutionary discordance has been proposed to 
manifest phenotypically as disease [14, 15].

Prior to the advent of agricultural practices, human 
dietary choices were limited to wild plant- and animal-
based foods. In contrast, the post-agricultural diet (par-
ticularly post-Industrial Revolution) is rich in cereals, re-
fined flour products, dairy, alcohol, and added sugars 
[16–18]. These modern food sources, which were largely 
unavailable in pre-agricultural societies, account for 
much of the daily energy consumed by North Americans. 
It has thus been proposed that modern human genetic 
makeup is ill-suited to the present environment. In other 
words, modern dietary choices may have placed present 
day individuals in a state of evolutionary discordance that 
has manifested in obesity, diabetes, cardiovascular dis-
eases, and neurodegenerative conditions [14, 15, 19–21].

Changing Patterns in the Western Diet
The Western diet is often considered to be a high-fat 

diet. However, in the early 80s, the United States Depart-
ment of Agriculture, American Heart Association, and 
American Medical Association supported a reduction in 
total dietary fat intake from 40 to 30% with hopes to curb 
the rising trend in heart disease that was associated with 
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elevated cholesterol levels. The result was that the reduc-
tion in fat intake was replaced with an increase in carbo-
hydrate and sugar consumption, ironically leading to an 
accelerated increase in heart disease. Thus, the major is-
sue with the Western diet appears to be the excessive con-
sumption of sugars, with fructose being the major con-
tributor to metabolic dysregulation. Humans consumed 
very little fructose before the mass production of sugar 
began after WWII. Soft drink consumption has increased 
from an average 90 servings/year per person in 1942 to 
approximately 600 servings/year in 2000 [22]. That is the 
difference of ∼2 soft drinks per week to ∼2 soft drinks a 
day. To make matters worse, preschool-aged children are 
now widely exposed to sugar-sweetened beverages, some-
thing that was nonexistent two generations ago.

Excess Caloric Intake Impairs Glucocorticoid and 
Ceramide Homeostasis
High-sucrose diets have been shown to increase gluco-

corticoid levels [23, 24], which is associated with a host of 
pathological effects (Fig. 1). Mice maintained on sugar-
sweetened water [25] and diabetic rats [26] display elevat-
ed serum corticosterone (analogue of the cortisol found 
in humans) levels, linking excess sucrose consumption 
and diabetic states to exaggerated glucocorticoid expres-
sion. Chronic glucocorticoid activity exerts several dam-
aging effects on the brain, including quenched antioxi-
dant capacity (increased oxidative damage) [27], poten-
tiation of neuroinflammation [28], induction of brain 
insulin resistance [26, 29], and activity-mediated LC 
burnout [30]. In animal models, corticosterone inhibits 

activation of the insulin receptor while simultaneously re-
ducing expression of its mRNA (reduced protein levels) 
[26, 31]. Furthermore, glucocorticoids oppose insulin on 
a functional level, i.e., catabolism versus anabolism [32]. 
Glucocorticoids also slow the movement of insulin into 
the CNS from the periphery through inhibition of insulin 
receptors within the blood-brain barrier (BBB) [33]. Cor-
ticosterone/cortisol may thus antagonize the action of in-
sulin on both a functional and molecular level while si-
multaneously quenching its availability in the brain.

Intriguingly, excessive caloric intake [34–36] and ex-
aggerated glucocorticoid activity [37] have also been im-
plicated in the development of non-alcoholic fatty liver 
disease (NAFLD). NAFLD is a multifactorial set of condi-
tions with clinical markers of obesity and insulin resis-
tance [38]. Under the umbrella of NAFLD falls non-alco-
holic steatohepatitis, a histological subtype characterized 
by hepatocyte injury and inflammation [38]. Liver steato-
sis/steatohepatitis and glucocorticoids are known to pro-
mote the production of ceramides [39–42] (Fig. 1). Ce-
ramides are known to inhibit insulin signaling and induce 
oxidative stress and inflammation [43, 44]. As ceramides 
are lipid soluble and can readily cross the BBB, they are 
of particular interest in neurodegeneration, as demon-
strated by de la Monte et al. [45], who found that periph-
eral ceramide generation caused sustained impairments 
in neuronal function and brain insulin signaling. Fur-
thermore, ceramides are often elevated in dementia-asso-
ciated diseases, including AD [46, 47], suggesting a ce-
ramide-mediated link between high sucrose-induced fat-
ty liver disease and AD pathogenesis.
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Fig. 1. High-sugar diets and states of per-
petual stress culminate in a “perfect storm” 
to drive neurodegenerative processes such 
as increased β-amyloidogenesis and tau 
protein phosphorylation, depletion of neu-
roprotective sex hormones, induction and 
aggravation of neuroinflammation, dis-
ruption of glucocorticoid homeostasis, and 
loss of anti-inflammatory/neuroprotective 
adrenergic locus coeruleus neurons. Exer-
cise antagonizes many of these processes. 
Lithium also attenuates many of the noted 
pathologies, likely through inhibition of 
GSK3β. Sedentary lifestyles (lack of exer-
cise) coupled with a possible lithium defi-
ciency may thus worsen the deleterious ef-
fects of caloric excess and chronic stress.
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High Sugar Intake Lays the Foundation for AD 
Pathogenesis
A causal link between excessive sucrose consumption 

and brain insulin resistance is well established [16, 48–
50]. The addition of 10% sucrose to the drinking water of 
mice can lead to glucose intolerance, hyperinsulinemia, 
and hypercholesterolemia, all symptoms characteristic of 
insulin resistance [51]. In addition, a high-sugar diet can 
induce CNS mitochondrial, Aβ, and tau pathologies with 
cognitive deficits and vascular anomalies similar to those 
observed in AD transgenic animal models [52–54]. As 
not all organ systems display the same degree of insulin 
resistance [55], it is possible that central insulin resistance 
can precede peripheral establishment, as suggested by 
Talbot et al. [56], who found that the brain of AD patients 
can be insulin resistant in the absence of diabetes. The 
brain is continually on the verge of hypoxia/ischemia due 
to its extremely high demand for oxygen and energy sub-
strates, supporting the idea of heightened brain sensitiv-
ity to even small changes in insulin signaling. Brain insu-
lin resistance leads to hyperactivation of glycogen syn-
thase kinase 3 beta (GSK3β), a serine/threonine kinase 
responsible for modulating several processes implicated 
in AD-related neurodegenerative processes, such as hy-
perphosphorylation of tau [57], increased Aβ production 
[58], and increased plaque-associated microglial-mediat-
ed inflammatory responses [59]. As the insulin signaling 
pathway is responsible for inhibiting constitutive GSK3β 
activity [60], even a modest degree of insulin resistance 
can initiate GSK3β-dependent cellular pathophysiology. 
Autophagy is regulated, in part, by the GSK3β signaling 
pathway and shows dysregulation very early in neurode-
generative disease progression [61–63]. This can exacer-
bate accumulation of both plaques and tangles by slowing 
their removal. Thus, a diet-induced state of central insu-
lin resistance likely contributes to AD pathogenesis.

In addition, high-sugar diets have been linked to in-
creased production of free radicals, likely as a result of 
aberrant fructose metabolism. Fructosylation of proteins 
generates reactive oxygen species that lead to increased 
cell stress and eventual induction of apoptosis [64]. This 
increase in free radical production comes from the for-
mation of advanced glycation end products (AGEs) [65] 
formed when sugars react with amino groups in proteins. 
AGEs act on receptors for AGEs (RAGE) that are upreg-
ulated under high-glucose conditions [66, 67]. Excessive 
RAGE signaling increases free radical production and ex-
acerbates oxidative damage [66, 68]. When coupled with 
suppressed antioxidant capacity resultant of high su-
crose-induced glucocorticoid activity [27, 69], the cumu-

lative effects of glucocorticoid and RAGE signaling could 
severely potentiate oxidative damage in the brain. Exag-
gerated formation of reactive oxygen species has been 
identified as an early event in neurodegeneration [70].

Finally, the high-sugar diet has been linked to in-
creased BBB permeability. Hargrave et al. [71] found that 
rats maintained on the Western diet for 90 days exhibited 
widespread increases in BBB permeability, with the CA1 
and CA3 hippocampal cell fields and dentate gyrus of 
both the ventral and dorsal hippocampus prominently af-
fected. Consequently, the rats demonstrated increased 
behavioral rigidity and a shift toward hippocampal-inde-
pendent learning, suggesting a disruption in regular hip-
pocampal performance [71]. The BBB consists of a sys-
tem of microvascular endothelial cells that serve to con-
trol the environment of the brain by facilitating the 
transport of nutrients and endocrine signals while simul-
taneously prohibiting the entry of toxic substances. Given 
the importance of the BBB in protecting the brain from 
toxins, it is no surprise that damage to the BBB and sub-
sequent increased permeability of the system is strongly 
linked to the development of AD [72]. In fact, BBB dis-
ruption has been found to precede the appearance of clin-
ical symptoms in both elderly human AD patients [73] 
and transgenic rodent models [74].

Caloric Excess Contributes to Loss of the 
Neuroprotective Sex Hormones
Depletion of sex hormones in both men and women is 

known to be associated with increased risk of AD [75, 76]. 
Estrogens, which decline in women during menopause, 
are considered neuroprotective as they improve neuronal 
viability [77] and decrease accumulation of Aβ [78–80]. 
Additionally, women with AD are shown to have lower 
estradiol than age-matched controls [81]. As for men, loss 
of androgens due to aging, fittingly termed andropause, 
is also considered to increase incidence of AD [82]. An-
drogens play similar neuroprotective roles to estrogen in 
preventing neurodegenerative disease. For example, tes-
tosterone was shown to inhibit Aβ-induced neurotoxicity 
in cultured hippocampal neurons through a mechanism 
independent of estrogen and was suggested to be due to 
non-genomic activation of androgen receptors [83]. Fur-
thermore, testosterone is shown to attenuate the secre-
tion of neuronal-derived Aβ proteins in rats [84]. Not 
only do androgens have direct protective effects, but 
through their conversion to estradiol, can have addition-
al indirect actions that protect against AD. It appears that 
although estrogen and its receptor may regulate AD pa-
thology by promoting the non-amyloidogenic cleavage of 
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APP [85] and decreasing tau hyperphosphorylation [86], 
testosterone decreases AD pathology through an andro-
gen receptor-mediated increase in the endopeptidase ne-
prilysin responsible for clearing Aβ levels in the brain [87] 
and inhibition of calpain-mediated tau cleavage known to 
play a role in Aβ-induced toxicity [88]. Although loss of 
testosterone in males or estrogen in females both increase 
risk for AD, the earlier and more rapid decline in estrogen 
in females associated with menopause likely contributes 
to the increased incidence of AD in postmenopausal fe-
males [89]. It is also suggested that proper hormonal sup-
plementation, via selective estrogen or androgen modula-
tors, decreases the risk of development of AD [90–92]. 
Therefore, factors which affect the rate of decline in these 
protective hormones may be contributing to the overall 
increased incidence of AD.

Is the typical Western diet, composed of high quanti-
ties of sugars and fats, an accelerating factor in the loss of 
protective sex hormones? It is no secret that a Western 
diet is associated with numerous detrimental effects on 
health that include weight gain, increased risk of cardio-
vascular disease, and increased free radical production. In 
men, free and total testosterone levels are depleted in 
those who consume large amounts of saturated, monoun-
saturated, or polyunsaturated fatty acids [93, 94]. A high-
fat diet in rats was also demonstrated to impair steroido-
genesis by damaging Leydig cells, regardless of the age at 
which the diet was introduced [95]. In addition, reduced 
protein content in a high-fat diet decreases the antioxi-
dant system and thereby the reduction of testosterone to 
estradiol [96]. Obesity, an epidemic in those who con-
sume the typical Western diet, appears largely linked to 
reductions in adrenal steroids and sex hormones [97], 
whereas weight loss, through either a high-protein or 
high-carbohydrate (and low-fat) diet, is shown to recover 
testosterone levels in obese men [98]. Fewer studies con-
sider the role of diet in female loss of sex hormones. In-
terestingly, it was recently demonstrated that the West-
ern-style diet in postmenopausal women increased serum 
levels of free estradiol, but did not impact free testoster-
one levels [99]. However, this study used high consump-
tion of eggs and red meat to simulate a Western diet. 
These foods are known to be high in cholesterol, the pre-
cursor for steroid synthesis. Another study looked at a 
high-fructose diet in rats and found it decreased adipose 
testosterone and estrogen in males and females, respec-
tively [100]. As a whole, studies suggest that consumption 
of a Western-style diet may increase the loss of sex ste-
roids in both men and women, in addition to the normal 
loss that occurs due to aging (Fig. 1).

Modern Society and Perpetual Stress
Changing Patterns in Daily Lifestyle
Threats to homeostasis demand efficient behavioral 

and physiological responses, which have come to be col-
lectively referred to as fight-or-flight [101, 102]. The 
fight-or-flight response is mediated, in part, by stimula-
tion of the HPA axis. HPA activity results in the produc-
tion and release of glucocorticoids (i.e., cortisol) [103].

The stress response can also be triggered by perceived 
threats. Acutely, glucocorticoids associated with the stress 
response mobilize energy reserves to ensure that ade-
quate resources are in place to deal with current or pre-
dicted physical insult/homeostatic challenge [104]. This 
response is essential to survival. However, chronic gluco-
corticoid activity is linked to a plethora of negative health 
consequences [105], such as depression [106, 107], insu-
lin resistance [88, 90], and neurodegeneration [106, 108].

The modern work environment is a stressful one. 
Deadlines, the threat of firing, and office politics all pres-
ent as stress-inducing challenges to our overworked 
minds. In fact, excessive amounts of time spent at work 
have been positively correlated to perceived psychologi-
cal stress [109–111] and dysregulated cortisol homeosta-
sis [112]. Unsurprisingly, these same long work hours 
have been linked to the increasingly common conditions 
of anxiety, depression, and diabetes [113–115]. Looking 
at the evidence, it seems not only plausible but probable 
that working habits are contributing to the widespread 
stress-fueled deterioration of our health.

Sugar as a Means of Coping with Stress?
Excess sugar consumption is linked to a host of adverse 

health conditions implicated in the pathogenesis of neu-
rodegeneration [52–54]. Worryingly, stress is associated 
with increased preference for pleasurable food choices 
(i.e., high sugar content) [116, 117], even in the absence 
of hunger [118]. Individuals reporting high levels of 
chronic stress display exaggerated activity in brain re-
gions involved in reward and motivation when shown 
images of palatable, high-calorie foods [119]. It is there-
fore possible that the modern stress-filled lifestyle is inti-
mately related to the burgeoning obesity epidemic; obe-
sogenic feeding disrupts physiological stress responses 
[23, 24], while chronic stress promotes obesogenic feed-
ing [116, 117, 119].

Is the LC Overdriven in States of Perpetual Stress?
A shared feature of neurodegenerative diseases is the 

common loss of LC-norepinephrine neurons [2]. The 
widely studied pathological losses of cholinergic neurons 
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in the nucleus basalis of Meynert in AD or dopaminergic 
neurons in the substantia nigra in Parkinson’s disease 
commonly overshadows the greater loss of noradrenergic 
neurons in the LC [3]. What is driving this early loss of 
LC neurons? A plausible answer to this may be the cumu-
lative impact of chronic stress, depression, and extended 
wakefulness (Fig. 1). A fast-paced, high-stress lifestyle in-
creases LC neuron activity and contributes to reduced 
time and quality of sleep. LC neurons fire at less than 1 
Hz during sleep (virtually quiescent during REM), less 
than 2 Hz during quiet waking, and greater than 2 Hz 
during active waking [120–123]. LC neurons have long, 
unmyelinated and highly branched axons that engage in 
tonic firing at increased rates during wakefulness and in 
response to glucocorticoids [30]. In addition, LC neurons 
have very broad action potentials and express low amounts 
of calcium-binding proteins for buffering of broad action 
potential-induced calcium influx [124, 125] that can lead 
to cell death. Modern lifestyles with reduced time for rest 
and sleep reduce the chance for LC neurons to slow down 
(i.e., LC loss is observed in stressed animals [126, 127]). 
The increased/prolonged activity, therefore, is associated 
with high metabolic demand (necessary to restore ionic 
gradients along long, unmyelinated, highly branched ax-
ons) that can result in increased oxidative stress and acti-
vation of apoptotic pathways [128, 129].

Stress Promotes Neuroinflammation
Chronic stress and glucocorticoids can have a pro-

found impact on brain networks [130–134], antioxidant 
enzyme capacity [69, 135], oxidative injury [136], and 
neuroinflammation [69, 135, 137, 138]. Elevated gluco-
corticoid levels have been shown to exert damage to the 
brain through two primary mechanisms. First, they have 
been shown to reduce the antioxidant capacity [27]: kai-
nic acid studies conducted by McIntosh et al. [69] dem-
onstrated that neuronal defenses against oxidative chal-
lenge were compromised in the brain in response to glu-
cocorticoid exposure. These findings were consistent 
with an earlier study conducted by the group, leading the 
researchers to propose that glucocorticoids predispose 
hippocampal neurons to damage in response to metabol-
ic stressors [27, 69]. Second, exaggerated glucocorticoid 
activity has been demonstrated to increase the likelihood 
that systemic inflammation will be propagated into the 
brain, leading to a neuroinflammatory response [28]. 
When administered prior to immune challenge (lipo-
polysaccharide; LPS), glucocorticoids were found to 
heighten pro-inflammatory responses, including in-
creased expression of TNF-α, IL-1β, and IL-6 and en-

hanced activation of hippocampal microglia. However, 
when administered 1 h post-immune challenge, gluco-
corticoids have been shown to suppress the pro-inflam-
matory effects of LPS [28], suggesting that chronic gluco-
corticoid circulation can exacerbate inflammatory re-
sponses to stressors. Frank et al. [139] found that 
hippocampal microglia demonstrated potentiated pro-
inflammatory cytokine response to LPS following prior 
exposure to acute stress. Increased glucocorticoid activity 
can also exacerbate inflammatory cascades through re-
duction of the antioxidant capacity of the brain [140]. 
This loss of antioxidant protection increases the likeli-
hood that systemic inflammation will be propagated into 
the CNS, resulting in a neuroinflammatory response [28].

Stress Drives Depletion of Sex Hormones
Chronic stress can play a role in accelerating age-relat-

ed decline in sex hormones (Fig. 1). It was determined 
that high psychological stress leads to lower testosterone 
levels in men [97]. In addition, Wang and colleagues 
[141] demonstrated that chronic stress exacerbated the 
aging-associated loss of testosterone and Leydig cells in 
male rats. Stress effects on sex hormones are also known 
to occur in women as the stress axis also inhibits the se-
cretion of estrogen. So how does stress affect rate of de-
cline? Corticotropin-releasing hormone, elevated in 
stress, impairs the release of gonadotropin-releasing hor-
mone [142, 143], depleting levels of luteinizing hormone 
and follicle-stimulating hormone, which are crucial hor-
mones to the production and release of sex steroids in 
both men and women. In addition, glucocorticoids are 
shown to inhibit luteinizing hormone release [144] as 
well as the secretion of estrogen and testosterone by the 
ovary [145, 146] and testes [147, 148], respectively. Given 
the prevalence of a chronic stress lifestyle, the impact of 
such stress on the sex hormones may be contributing to 
their loss and the eventual development of AD.

A State of Lithium Deficiency
Should Lithium Be Added to the List of Essential 
Minerals?
Given the integral role played by GSK3β in the patho-

genesis of AD and the inhibitory effects of lithium on its 
action, it is reasonable to question whether the growing 
AD concern can be partially accounted for by a lack of 
dietary lithium. Considering that lithium is a trace min-
eral found in both drinking water and plant matter, it is 
fair to assume that mammalian species evolved with lith-
ium in the environment and developed some use for it in 
complex signaling pathways. For example, rats given a 
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lithium-deficient chow demonstrate suppressed lever-
press avoidance behavior compared to rats sustained on 
a lithium-supplemented diet, suggesting a physiological 
role for lithium in the regulation of behavior [149]. Fac-
tors that limit the availability of lithium or disrupt our 
handling/retention of it may thus predispose us to neuro-
degeneration.

Are We Lithium Deficient?
Given that lithium is primarily removed from the body 

via renal clearance, it is sensible to presume that factors 
which increase the renal clearance of lithium (rCLi) can 
contribute to a state of lithium deficiency. Lithium is an 
alkali metal and monovalent cation that directly com-
petes with sodium for transport across epithelial mem-
branes on account of similar ionic radii [150, 151]. Con-
sequently, lithium and sodium share an intriguing in-
verse relationship. As the degree of sodium intake 
increases, so too does rCLi. When sodium concentrations 
become excessive, transport systems resident within the 
epithelium become saturated and lithium resorption de-
creases [152, 153]. Of further concern, a study by Shirley 
et al. [154] indirectly demonstrated that caffeine, a com-
monly consumed diuretic, can increase rCLi in healthy 
males given a 400 mg oral dose of caffeine (∼4 cups of 
coffee). It is therefore reasonable to propose that Western 
dietary trends, such as excessive salt intake [155] and caf-
feine consumption, may promote development of a lith-
ium-deficient state.

Medical diuretic use can also influence rCLi [156]. Nu-
merous diuretics such as amiloride, acetazolamide, and 
furosemide exacerbate lithium clearance through a re-
duction of proximal- and distal-tubule lithium resorption 
[152, 156]. A study of 5,092 elderly antihypertensive med-
ication users found that use of thiazide diuretics was in-
versely correlated with AD incidence [157]. Thiazide di-
uretics reduce rCLi by increasing the resorption of lithi-
um [156, 158, 159]. While potentially spurious, the inverse 
relationship between medications that decrease rCLi and 
AD incidence is worthy of further exploration for the in-
sight it may provide into the connection between lithium 
and neurodegeneration.

As factors that promote rCLi are becoming increasingly 
prevalent, epidemiological evidence that associates a lack of 
dietary lithium with psychiatric illness suggests a plausible 
scenario for widespread lithium deficiency. In normal and 
criminal populations, the concentrations of lithium found 
in the drinking water demonstrates a negative correlation 
with suicidal and aggressive behaviors [160, 161]. In Texas, 
mental hospital admission and readmission rates in 27 

communities were inversely proportional to the lithium 
content of residential drinking water [162]. Scalp hair anal-
yses yield similar results. Both children with autism and 
their mothers demonstrate markedly reduced hair lithium 
concentrations relative to the general population [163], 
while a study of American and German adults found that 
roughly 20% of all individuals have low scalp hair lithium 
levels, with the lowest concentrations occurring in individ-
uals with learning impairments, cardiovascular disease, 
and violent criminal behavior [149].

Lithium May Antagonize AD-Related Pathologies
One of the more intriguing capacities of lithium is its 

putative ability to oppose damages associated with brain 
insulin resistance. Lithium and the GSK3β cofactor mag-
nesium share similar ionic radii, allowing lithium to act 
as a competitive inhibitor for the binding of Mg2+ at the 
enzyme’s catalytic core [164]. As GSK3β is known to con-
tribute to both Aβ production and aberrant tau phos-
phorylation [57, 59], a protective role for GSK3β inhibi-
tors (i.e., lithium) against AD pathogenesis likely exists. 
In culture, lithium consistently reduces tau phosphoryla-
tion [165, 166] and Aβ generation [167, 168]. These ob-
servations are confirmed in vivo, where lithium attenu-
ates GSK3β-, Aβ-, and phosphorylated tau-driven pathol-
ogies [169–174].

Of additional note, lithium appears to support signal-
ing through the canonical Wingless/int (Wnt)/β-catenin 
pathway – itself a regulator of GSK3β activity – through 
inhibition of GSK3β. Expression of Wnt3 is associated 
with increased adult hippocampal neurogenesis [175] 
and reduced β-amyloidogenic processing of APP [58]. 
Wnts are glycoproteins responsible for activating devel-
opmental and pro-proliferative signaling pathways 
through interaction with several distinct receptors, in-
cluding the anti-GSK3β Frizzled (Fzd)-mediated cascade. 
When Wnt binds to Fzd, the protein Dishevelled (Dvl) is 
recruited. Activation of Dvl leads to downstream inhibi-
tion of GSK3β, preventing the phosphorylation of the 
GSK3β substrate β-catenin, thereby sparing β-catenin 
from degradation via the proteasomal pathway [176–
178]. Increased endogenous β-catenin expands the popu-
lation of dividing adult hippocampal progenitor cells 
[179, 180] and reduces synthesis of β-secretase [58]. Re-
duced hippocampal neurogenesis is symptomatic of nu-
merous conditions prodromal to AD [181–183]. By in-
creasing the pool of active β-catenin through inhibition 
of GSK3β [180], lithium may support the anti-Aβ and 
pro-neurogenesis output of the canonical Wnt/β-catenin 
pathway.
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Lithium may even attenuate the neuroinflammatory 
responses believed to be at the root of a host of neurode-
generative conditions, including AD [184–188]. GSK3β 
plays an integral role in the induction of pro-inflamma-
tory microglial activation [189]. Several studies have 
demonstrated that lithium can block LPS-induced induc-
tion of M1 (pro-inflammatory) microglial phenotypes 
[190, 191], likely through mechanisms reliant on inhibi-
tion of GSK3β.

It should be noted that lithium has demonstrated little 
to no efficacy as a frontline treatment in AD [192–194]. 
However, there is evidence to suggest that lithium is best 
suited for prophylaxis, as evidenced by improvements in 
clinical biomarker expression and cognitive decline in 
amnestic mild cognitive impairment patients – a condi-
tion often prodromal to AD – following long-term treat-
ment with low-dose lithium orotate [195]. Furthermore, 
in a sample of elderly bipolar disorder patients, AD prev-
alence was found to be 5% (3/66) in those on lithium and 
33% (16/48) in those who were not [196].

In summary, through inhibition of GSK3β (primarily), 
prophylactic supplementation with lithium may attenu-
ate Aβ, phospho-tau, and neuroinflammatory pheno-
types resultant of Western dietary trends and stress-filled, 
sedentary lifestyles.

What Can We Do?

Exercise Interacts with Many Factors That Drive AD 
Pathology
Exercise and AD
The rise in AD that plagues society is possibly a result 

of combining the previously discussed factors, but fortu-
nately we are not cemented to this fate as literature pres-
ently exists that supports a preventive role for exercise in 
AD. It was recently demonstrated that 6–12 months of 
exercise in seniors with dementia or mild cognitive im-
pairment improved both memory and the volume of the 
hippocampus compared to sedentary controls [197]. Fur-
thermore, treadmill exercise in rats injected with Aβ is 
shown to prevent loss of cognitive function [198]. Alter-
natively, lack of exercise is implicated in development of 
AD and dementia [199]. In addition to the behavioral im-
provements exercise promotes in AD, it is also demon-
strated to interact with the development of Aβ plaques. 
For example, voluntary exercise for a period of 5 months 
in a transgenic mouse model, TgCRND8, resulted in de-
creased Aβ plaques [200]. The mechanism involved in 
this phenomenon is associated with changes in APP pro-

cessing. Clearly, exercise can improve physiological and 
behavioral outcomes in AD patients, but might exercise 
also interact with the factors discussed in this review? Can 
exercise delay or prevent AD onset by antagonizing the 
factors associated with its induction?

Exercise and the Western Diet
As previously discussed, a high-carbohydrate or high-

fat diet is associated with various detrimental effects on 
health; however, these can be reversed with regular exer-
cise. Exercise training in overweight and previously sed-
entary adults improved metabolism of both glucose and 
fats [201]. It was previously shown that exercising could 
compensate for the resulting insulin resistance caused by 
consumption of a high-fat diet in rats [202]. This com-
pensation resulted from increases in muscle glucose up-
take and storage rather than remedying the underlying 
development of diet-driven insulin resistance. Interest-
ingly, exercise training in obese women with no effect on 
weight, inflammatory markers, or adiponectin has still 
been shown to increase insulin sensitivity [203]. High-
fructose diet effects are also ameliorated by exercise, as 
shown by Botezelli and colleagues [204], who found that 
swim exercise introduced both early and late into the diet 
protocol prevented development of insulin resistance and 
generation of NAFLD. In addition to affecting insulin re-
sistance and weight, exercise is also known to impact fac-
tors in the brain which protect against the effects of a 
high-fat diet. These include brain-derived neurotrophic 
factor (BDNF), CREB, and synapsin [205]. Elevation of 
BDNF is achieved by increased transcription of mRNA 
for BDNF and a reduction in reactive oxygen species. Ex-
ercise also decreases the generation of free radicals that is 
associated with consumption of a high-fat diet [205]. 
Obesity, a common result of the Western diet, results in 
dysfunction in mitochondria and thereby oxidative stress. 
Exercise, through an unknown mechanism, attenuates 
this obesity-induced dysfunction in skeletal muscle mito-
chondria and prevents the generation of oxidative stress 
[206]. Thus, exercise can be used to combat the AD-in-
ducing effects of a high-carb or high-fat diet.

Exercise and Chronic Stress
Exercise, in addition to its benefits in weight loss and 

diabetes, exhibits profound improvements in stress and 
depression. Exercise is already commonly touted as a 
treatment for anxiety [207] and depressive disorders 
[208, 209]. Multiple mechanisms associated with exercise 
can produce these improvements in mood. Of particular 
note is the upregulation of galanin that occurs in LC neu-
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rons following exercise [210, 211] (Fig. 1). Galanin, a pep-
tide thought to be neuroprotective and capable of stimu-
lating neurogenesis, is released from LC-noradrenergic 
neurons during phasic burst firing [212–214]. As the LC 
is the main source of norepinephrine for the brain, it plays 
an important role in mood regulation. For instance, many 
medications that affect mood and are used to treat de-
pression are enhancers of norepinephrine levels (in addi-
tion to serotonin).

Beyond protection of the LC, galanin abates Aβ-
induced activation of p53, Bax, and caspase-3, which be-
long to the apoptotic cascade [215]. In human primary 
neurons, galanin, via GAL-2 receptor, downregulates Bax 
[216]. Galanin reduction is associated with diabetes [217], 
stress, and depression and may represent a means by 
which these risk factors contribute to AD pathogenesis.

Exercise also improves mood via other routes. One 
such alternative mechanism is the increase of dopamine 
in the reward system. For example, in the prefrontal cor-
tex, increases in dopamine and the D2 receptor [218] fol-
lowing exercise led to antidepressant-like effects in rats. 
Finally, the major neurotransmitter for mood, serotonin, 
is demonstrated to be increased in senior men who exer-
cise [219]. Therefore, chronic stress and depression are 
effectively attenuated via introduction of exercise.

Finally, and perhaps most importantly, regular exer-
cise has been shown to reduce the degree of HPA activa-
tion in response to non-exercise-related stress [220]. As 
discussed previously, adaptive responses to real and per-
ceived stressors involve induction of both the HPA axis 
and sympathetic nervous system. The result of this adap-
tation, known as allostasis, is the mobilization of lipids 
from adipose tissue and glucose from hepatic glycogen 
stores. The degree and frequency of the stress response 
contributes to allostatic load (“wear-and-tear” as the re-
sult of stress). How quickly allostatic load accumulates is 
thought to depend on two primary factors: (1) mental fit-
ness, i.e., how an animal perceives stress, and (2) physical 
fitness [221]. Not surprisingly, sedentary individuals with 
poor physical fitness demonstrate increased allostatic 
load relative to their peers [222]. Poor physical fitness also 
correlates with increased incidence of stress-related 
health complications [221, 223].

The stress response is regulated by a negative feedback 
loop through the hippocampus and HPA that attenuates 
HPA activity following sufficient interaction between 
glucocorticoids and their receptors in the hippocampus 
[224, 225]. Chronic elevations in glucocorticoids, as ob-
served due to perpetual stress [182] and/or high-sugar 
feeding [23, 24], decrease glucocorticoid receptor density 

in the hippocampus, thereby blunting negative feedback 
inhibition of the HPA axis and prolonging the duration 
of the stress response [226]. Of concern, LC neurons en-
gage in tonic firing at increased rates during wakefulness 
[120–123] and in response to HPA activation [30], which 
supports the idea that excessive corticotropin-releasing 
factor (CRF) signaling in the LC contributes to “activity-
mediated burnout” of resident noradrenergic neurons; 
CRF promotes LC activity during stress [227]. Given that 
high-sucrose diets and chronic stress are known to reduce 
glucocorticoid-mediated negative feedback of HPA out-
put, it is likely that CRF-induced elevations in LC basal 
firing rates would proceed unchecked under such condi-
tions, culminating in neuronal damage and possible 
apoptosis [128, 129]. Sedentarism, chronic stress (CRF-
induced firing), and insufficient sleep (increased basal fir-
ing rate) might thus constitute a means by which lifestyle 
factors drive the LC atrophy implicated in a host of neu-
rodegenerative conditions.

In contrast, regular exercise improves both behavioral 
and physiological responses to non-exercise-related 
stressors [228–230]. This positive effect of exercise may 
be mediated by modulation of HPA reactivity. Aerobic 
exercise protects against stress/diet-induced reductions 
in hippocampal glucocorticoid receptor expression, pre-
serving the integrity of the negative feedback loop re-
sponsible for stress response cessation [220, 225]. In ad-
dition, as mentioned previously, exercise increases 
galanin expression in the LC [211]. Galanin is known to 
act in an autocrine manner to desensitize LC neurons 
through amplification of hyperpolarization following 
spike discharge [212, 231]. Therefore, it is possible that 
exercise could prevent the activity-mediated burnout of 
the LC associated with chronic stress, i.e., exercise in-
creases galanin levels, which in turn dampen the basal 
firing rate of LC neurons. In short, exercise may protect 
against stress-induced LC neuronal loss by (1) attenuat-
ing the duration and severity of allostasis through main-
taining efficacy of the negative feedback loops involved in 
stress response cessation, and (2) clamping down on LC 
overactivity via upregulation of local galanin expression.

Exercise and Inflammation
AD is linked to aberrant regulation of inflammatory 

processes. Intriguingly, exercise has demonstrated body 
fat-independent anti-inflammatory capabilities [232, 
233]. Treadmill exercise in high fat-fed rats blocks the in-
crease in pro-inflammatory mediators, such as TNF-α, 
IL-1β, and cyclooxygenase-2, associated with obesogenic 
feeding [234]. These anti-inflammatory effects are ob-
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served in humans as well. Physically fit individuals dem-
onstrate increased expression of IL-10 [235, 236] (anti-
inflammatory) and decreased levels of the pro-inflamma-
tory mediators IL-6 and TNF-α [235, 237–240] relative to 
their sedentary peers. Exercise has also been shown to 
blunt the response mounted to LPS, a known inducer of 
systemic inflammation [241]. As exercise decreases in-
flammatory burden in individuals suffering from chronic 
systemic inflammation, it may protect against induction 
of neuroinflammation (and thus AD) (Fig. 1); peripheral 
inflammation leads to central inflammation [242–244].

Exercise and the Loss of Sex Hormones
The loss of sex hormones can be slowed or prevented 

by introducing exercise. For example, testosterone pro-
duction from the testes in OLETF rats is demonstrated to 
increase following training with aerobic exercise [245]. 
Exercise also attenuated obesity-augmented hypogonad-
ism in male rats [246]. While exercise increases BDNF in 
the hippocampus, the degree of improvement appears to 
depend on the presence of estradiol [247]. It was shown 
that exercise-induced increases in BDNF are absent when 
estrogen is not present. Interestingly, voluntary activity 
was also shown to be reduced in rats that were without 
estrogen [247]. This study demonstrates an important re-
lationship between exercise and estrogen in brain health. 
More evidence of the interaction between exercise and 
estrogen comes from a study by Erickson and colleagues 
[248], who demonstrated that exercise with hormone re-
placement therapy ameliorated decline in brain function 
and loss of brain tissue that occurs with long-term use of 
hormone replacements. Furthermore, as discussed in 
previous sections, decline in sex hormones is accelerated 
by the Western diet and chronic stress. Given that exer-
cise also disrupts these factors, it is reasonable to assume 
that sex hormone decline is also indirectly improved.

Lithium Supplementation May Delay or Prevent AD 
Onset
Lithium as a Prophylactic in AD
Lithium salts have a well-established role in the treat-

ment of major affective disorders, notably mania. Interest-
ingly, a comparison of the prevalence of AD in elderly bi-
polar disorder patients found that AD was diagnosed in 
just 5% of patients undergoing lithium therapy, in contrast 
to a rate of 33% in those not on the medication [196]. While 
efforts to treat AD with lithium have failed to yield signifi-
cant reductions in disease-related biomarkers or notable 
benefits to cognitive performance [192, 193], there is rea-
son to believe that the element may have prophylactic ben-

efit in individuals considered high-risk for disease devel-
opment. Long-term lithium treatment (> 300 mg of LiCO3/
day) in 45 individuals with amnestic mild cognitive im-
pairment yielded a significant decrease in cerebrospinal 
fluid concentrations of phospho-tau and a marked in-
crease in cognitive performance relative to placebo [195]. 
Furthermore, lithium demonstrates prophylactic potential 
even at subtherapeutic dosage. Microdose lithium (0.3 mg 
of LiCO3/day) prevented cognitive decline in AD patients 
over a 15-month period. Significant differences between 
the treatment and control groups were observed as early as 
the third month, with the gap broadening progressively 
[249]. While inconclusive, these findings suggest lithium 
may have the potential to slow or even halt the progression 
from prodromal stages to AD (Fig. 1).

A Case for Lithium Orotate
Given the reported capacity of lithium to attenuate the 

progressive cognitive decline observed in AD, the lack of 
research surrounding lithium as a prophylactic agent is 
perplexing. Much of the hesitation surrounding use of 
lithium salts stems from the narrow therapeutic index for 
lithium carbonate. While these concerns are valid, they 
arise from the likely incorrect assumption that all lithium 
salts work the in the same manner. In the late 1970s, King 
et al. [250] noted that lithium orotate resulted in greater 
serum and brain concentrations of elemental lithium 
than did equivalent lithium carbonate dosages. These in-
creased serum concentrations may be related to reduced 
kidney filtration rate [251] and/or increased delivery of 
lithium across cell membranes as a neutral non-dissoci-
ated lithium orotate complex [252, 253]. As such, lithium 
orotate can achieve therapeutic brain lithium concentra-
tions at markedly reduced dosages compared to conven-
tional lithium compounds, expanding its safety profile. A 
PubMed search for “lithium orotate” will bring up nine 
results. Of these, the most recent three imply that lithium 
orotate is toxic in some manner [254–256]. However, 
upon closer inspection, no real toxicity occurred despite 
taking 18 times the suggested dose [256]. Considering the 
reduced dose requirements of lithium orotate, it warrants 
further study as a potentially safe treatment for a host of 
neurological illnesses, AD included.

Conclusion

Altogether, the evidence summarized in this review 
presents a profound role for dietary and lifestyle decisions 
in the preservation or deterioration of neurological health 



Pacholko/Wotton/BekarNeurodegener Dis 2019;19:60–7770
DOI: 10.1159/000503451

throughout the life span (Table 1). Excess caloric intake 
(sucrose, in particular) disrupts glucocorticoid [23, 24] 
and ceramide homeostasis [39–42], which in turn con-
tributes to central insulin resistance, neuroinflammation, 
and brain oxidative stress [28, 29, 43, 44, 100]. These 
events/states are directly linked to the β-amyloidogenic 
processing of APP and hyperphosphorylation of micro-
tubule-associated tau proteins [52–54, 57, 58], the hall-
mark processes of AD-like neurodegeneration. Of note, 
increased consumption of palatable, high-caloric density 
foods is likely a coping mechanism for chronic stress 
[116, 117, 119], a widespread issue in modern society.

In addition to promoting increased sugar intake, per-
petual stress perturbs physiological HPA function, lead-
ing to dysregulated glucocorticoid activity. Both chronic 
stress – likely through central mechanisms – and excess 
glucocorticoid signaling overdrive the LC by increasing 
the basal firing rate of resident adrenergic neurons [30]. 
Over time, this increase in basal activity induces a state of 
“activity-mediated burnout” which culminates in a loss of 
function [128, 129]. As adrenergic output from the LC is 
highly anti-inflammatory and neuroprotective, its loss 
will likely exacerbate central damages inflicted by other 
stressors (i.e., caloric excess).

Making matters worse, our society may be lithium de-
ficient. Excess salt and caffeine consumption increase 
rCLi, potentially leading to a lithium-deficient state. Low 
levels of lithium in scalp hair, which correlates with insuf-
ficient lithium intake, are associated with autism [163], 
violent behavior, and suicidal ideation [149]. Similar 
trends are observed in communities lacking lithium in 
the drinking water [160, 161]. Lithium is a potent inhibi-

tor of GSK3β [164], whose aberrant activity is a central 
mediator of the deleterious effects of insulin resistance 
[60] (i.e., GSK3β phosphorylates tau [57, 59]) and ulti-
mately AD. As such, lithium deficiency likely worsens the 
neurological damages associated with high sugar intake 
and chronic stress.

While AD is viewed as an inevitable event that affects 
random individuals, the evidence provided in this review 
highlights ways in which AD onset may potentially be de-
layed or even avoided. First, exercise counteracts many of 
the deleterious effects associated with chronic stress and 
the Western diet. Aerobic exercise in rodent models at-
tenuates insulin resistance, inflammation, and free radi-
cal production in response to obesogenic feeding [202–
205]. Furthermore, exercise protects the LC from stress-
induced degeneration by restoring appropriate HPA 
function [220, 228–230] and increasing expression of the 
neuroprotectant galanin [210]. Second, treatment with 
low doses of lithium carbonate prevents cognitive decline 
for individuals with amnestic mild cognitive impairment 
[195] or AD [249], suggesting a prophylactic role for lith-
ium against neurodegeneration despite a demonstrated 
lack of efficacy as a frontline treatment [192–194]. To 
sum up, exercise and lithium supplementation (correct-
ing for deficiency) represent means by which we may take 
control of our own health and potentially prevent the 
events that lead to AD pathogenesis.

People are exposed to differing sets of stressors 
throughout their life span. Thus, differing levels of phys-
ical activity, lithium concentration in the drinking water, 
socioeconomic status, stress, and access to healthy food 
may in part explain why not all individuals develop AD. 

Table 1. Exercise is a potent attenuator of many AD-associated pathological processes

Western diet Chronic stress Exercise Lithium
supplementation

AD phenotype

HPA/GC dysregulation ↑ 23–26 ↑ 112, 182,
202–204, 210

↓ 211, 212, 220,
228–230, 231

– 261–265

Ceramide production ↑ 39–42 ↑ 243 ↓ 189 – 46, 47
Insulin resistance ↑ 16, 26, 29, 44, 48–51 ↑ 257–260 ↓ 202–204 ↓ 164, 170 52–54, 57–60
Loss of locus coeruleus ↑ 30 ↑ 30, 112, 120–129 ↓ 210, 211 – 2–4
Inflammation ↑ 28, 59, 138 ↑ 28, 69, 135–140 ↓ 232–241 ↓ 184–188, 190, 191 70, 184–188
Aβ and/or pTau production ↑ 52–54, 57, 58 ↑ 261–264 ↓ 198, 200, 215 ↓ 58, 165–174, 195 57, 58
Loss of sex hormones ↑ 93–97, 99, 100 ↑ 97, 141–148 ↓ 245, 246 – 75, 76, 81, 82

While chronic stress, Western diet, and lithium deficiency alone are unlikely to precipitate AD, they may act in a synergistic manner 
to drive disease pathogenesis. The relationship between the pathological processes associated with each factor and AD are captured in 
the “AD phenotype” box. Exercise shows potential to combat the AD-related pathologies associated with these factors.
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In closing, diet, stress, physical activity, and lithium in-
take are factors within our control that likely contribute 
to neurodegenerative processes associated with AD 
pathogenesis.
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